

First-Order Logic FOL Examples Power of FOI

Reasoning in FOL

First-Order Logic

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

- First-Order Logic
- FOL Examples Power of FOL

Reasoning in FOL

First-Order Logic

 $\forall person \ ItIs Raining() \rightarrow IsWet(person)$

- Things:
 - constants: Fred, Car54
 - functions (thing → thing): MotherOf(*Fred*), NextTo(*Fred*, *House*)
- Relations:
 - predicates (thing → bool): IsWet(Fred), LivesIn(MotherOf(Fred), House)
- Complex expressions:
 - connectives: IsWet(*Fred*) ∨ OnRoad(*Car*54)
 - variables: ∃*person*
 - quantifiers: $\forall person \ \text{IsWet}(person)$

First-Order Logic First-Order Logic FOL Examples Power of FOL

Reasoning in FOL

FOL Examples

 $\forall person \forall time$

 $(IsRaining(time) \land \neg \exists umbrella Holding(person, umbrella, time)) \rightarrow IsWet(person, time)$

Fred loves Mary. All crows are black. Whales are mammals that live in the water. Mary likes the color of one of Fred's ties. I can't hold more than one thing at a time.

First-Order Logic First-Order Logic FOL Examples Power of FOL

Reasoning in FOL

Power of FOL

- Indirect knowledge: Tall(*MotherOf*(*Fred*))
- Counterfactuals: ¬Tall(*John*)
- **Partial knowledge:** IsSisterOf $(b, a) \lor$ IsSisterOf(c, a)
- Partial knowledge: $\exists x \text{ IsSisterOf}(x, a)$

Reasoning in FOL

Clauses Example Resolution Unification Example

Reasoning in FOL

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Clauses

First-Order Logic

Reasoning in FOL

Clauses Example Resolution Unification Example

- **1** Eliminate \leftrightarrow : convert $a \leftrightarrow b$ to $a \rightarrow b \land b \rightarrow a$
- 2 Eliminate \rightarrow : convert $a \rightarrow b$ to $\neg a \lor b$
- Move ¬ inwards: eliminate double negatives and apply De Morgan's law
- 4 Standardize variables rename so variables are unique
- Skolemize existential variables: convert ∃x Rich(x) to Rich(y), where y is a newly named constant
- **6** Drop universal qualifiers: convert $\forall x \operatorname{Person}(x)$ to $\operatorname{Person}(x)$
- 7 Distribute \lor : convert $(a \land b) \lor c$ to $(a \lor c) \land (b \lor c)$

Reasoning in FOL

Example

- Resolution
- Example
- Refutation

Example

- 1 Cows like grass.
- 2 Cows eat everything they like.
- 3 Martin is a cow.

Prove that Martin eats grass.

Reasoning in FOL

Clauses

Resolution

Unification Example

Refutation

Resolving the truth of a query

Resolution(*KB*, α)

- 1: *clauses* \leftarrow set of clauses in $KB \land \neg \alpha$
- 2: $new \leftarrow \{\}$

7:

- 3: while true do
- 4: **for each** pair of clauses C_i, C_j in *clauses* **do**
- 5: $resolvents \leftarrow \text{RESOLVE}(C_i, C_j)$
- 6: **if** $\Box \in$ *resolvents* **then**
 - return true
- 8: $new \leftarrow new \cup resolvents$
- 9: **if** $new \subseteq clauses$ **then**
- 10: return false
- 11: $clauses \leftarrow clauses \cup new$

KB is the knowledge base, α is the query

School of Computing and Data Science

Reasoning in FOL

Clauses

Resolutio

Unification

Example Refutation

Unifying Two Terms

UNIFY(t1, t2)

3:

5:

- 1: if One term is a constant then
- 2: **if** Other term is a constant **then**
 - return t1 = t2
- 4: **if** Other term is a function **then**
 - **return** fail
- 6: **if** Other term is a variable **then**
- 7: substitute constant for variable
- 8: else if One term is a function then
- 9: **if** Other term is a function **then**
- 10: **return** UNIFY(arg lists)
- 11: **if** Other term is a variable **then**
- 12: **if** variable occurs in function **then**
- 13: return fail
- 14: **else** substitute function for variable
- 15: else
- 16: substitute one variable for the other

- Reasoning in FOL
- Clauses
- Resolution
- Unification Example
- Rafigation

- Example
 - 1 Anyone who reads is literate.
 - 2 Whales are not literate.
 - **3** Some whales are intelligent.
 - 4 Prove: someone intelligent cannot read.

Conversion to CNF

Reasoning in FOL

Clauses

Resolution

Unificatio

Example

Refutation

Basis for Refutation

Remember $KB \models \alpha$ iff $KB \rightarrow \alpha$ is valid

1 Assume $KB \models \alpha$

2 If a model *i* satisfies *KB*, then *i* satisfies α

3 If *i* satisfies α , then it doesn't satisfy $\neg \alpha$

4 Therefore no model satisfies *KB* and $\neg \alpha$

5 Therefore $KB \wedge \neg \alpha$ is unsatisfiable

6 Therefore we can derive \Box from $KB \land \neg \alpha$