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Formalizing Problem Solving

State: hypothetical world state
Operations: actions that modify world
Goal: desired state or test

Newell, Shaw, and Simon: “Report On A General Problem-Solving
Program”, 1959
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SampleWorld: first assignment
SW state space
SW search space
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______-First Search

1: Open← ordered list containing initial state
2: while true do
3: if Open is empty then
4: return failure
5: Node← Open.Pop()
6: if Node is goal then
7: return Node (or path to Node)
8: else
9: Children← Expand(Node)

10: Add Children to front of Open
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DFS Evaluation

Assume branching factor b and solution depth d

Completeness:
Time:

Space:
Admissibility:
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Breadth-First Search

1: Open← ordered list containing initial state
2: while true do
3: if Open is empty then
4: return failure
5: Node← Open.Pop()
6: if Node is goal then
7: return Node (or path to Node)
8: else
9: Children← Expand(Node)

10: Add Children to end of Open
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BFS Evaluation

Assume branching factor b and solution depth d

Completeness:
Time:

Space:
Admissibility:
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Uniform-Cost Search

1: Open← priority queue containing initial state
2: while true do
3: if Open is empty then
4: return failure
5: Node← Open.Pop()
6: if Node is goal then
7: return Node (or path to Node)
8: else
9: Children← Expand(Node)

10: Add Children to Open, sorted by path cost
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Check for cycles with Node’s ancestors

Maintain closed list to detect duplicates
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Comparisons

Algorithm Time Space Complete Admissible
DFS bm bm if m≥ d no
BFS bd bd yes if ops cost 1
Uniform-cost bd bd yes yes

b: branching factor
d: solution depth
m: maximum explored depth
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Resource Requirements for Solutions

Assume b = 10,100k nodes/sec, 100 bytes/node

Sol. depth Nodes Time Space
1 11 .11 ms 1.1Kb
2 111 1.1 ms 11Kb
4 11,111 .11 sec 1Mb
6 106 11 sec 111Mb
8 108 18 min 11Gb

10 1010 31 hours 1Tb
12 1012 128 days 111Tb
14 1014 35 years 11Pb
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Search Tradeoffs

BFS is complete and admissible, but uses bd space

DFS uses bd space, but is not admissible and only complete if
m > d

How can we get the best of both algorithms?
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Iterative Deepening Search

1: for d = 1 to ∞ do
2: DFS to level d
3: if DFS succeeds then
4: return solution
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IDS Evaluation

Assume branching factor b and solution depth d

Completeness:
Time:

Space:
Admissibility:
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Runtime

How can this be efficient? This generates nodes near the start
many times.

Intuition: Because of branching, most of the generated nodes are
at the same depth as the goal node.

generated nodes = bd +2bd−1 + · · ·+(d−1)b2 +db
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