
Classical AI

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

May 15, 2023



Search
Formalization

Representation

Basic
Algorithms

Search

School of Computing and Data Science - 2/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search
Formalization

Representation

Basic
Algorithms

Formalizing Problem Solving

State: hypothetical world state
Operations: actions that modify world
Goal: desired state or test

Newell, Shaw, and Simon: “Report On A General Problem-Solving
Program”, 1959

School of Computing and Data Science - 3/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search
Formalization

Representation

Basic
Algorithms

Representation

SampleWorld: first assignment
SW state space
SW search space

School of Computing and Data Science - 4/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Basic Algorithms

School of Computing and Data Science - 5/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

______-First Search

1: Open← ordered list containing initial state
2: while true do
3: if Open is empty then
4: return failure
5: Node← Open.Pop()
6: if Node is goal then
7: return Node (or path to Node)
8: else
9: Children← Expand(Node)

10: Add Children to front of Open

School of Computing and Data Science - 6/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

DFS Evaluation

Assume branching factor b and solution depth d

Completeness:
Time:

Space:
Admissibility:

School of Computing and Data Science - 7/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Breadth-First Search

1: Open← ordered list containing initial state
2: while true do
3: if Open is empty then
4: return failure
5: Node← Open.Pop()
6: if Node is goal then
7: return Node (or path to Node)
8: else
9: Children← Expand(Node)

10: Add Children to end of Open

School of Computing and Data Science - 8/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

BFS Evaluation

Assume branching factor b and solution depth d

Completeness:
Time:

Space:
Admissibility:

School of Computing and Data Science - 9/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Uniform-Cost Search

1: Open← priority queue containing initial state
2: while true do
3: if Open is empty then
4: return failure
5: Node← Open.Pop()
6: if Node is goal then
7: return Node (or path to Node)
8: else
9: Children← Expand(Node)

10: Add Children to Open, sorted by path cost

School of Computing and Data Science - 10/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Check for cycles with Node’s ancestors

Maintain closed list to detect duplicates

School of Computing and Data Science - 11/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Comparisons

Algorithm Time Space Complete Admissible
DFS bm bm if m≥ d no
BFS bd bd yes if ops cost 1
Uniform-cost bd bd yes yes

b: branching factor
d: solution depth
m: maximum explored depth

School of Computing and Data Science - 12/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Resource Requirements for Solutions

Assume b = 10,100k nodes/sec, 100 bytes/node

Sol. depth Nodes Time Space
1 11 .11 ms 1.1Kb
2 111 1.1 ms 11Kb
4 11,111 .11 sec 1Mb
6 106 11 sec 111Mb
8 108 18 min 11Gb

10 1010 31 hours 1Tb
12 1012 128 days 111Tb
14 1014 35 years 11Pb

School of Computing and Data Science - 13/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Search Tradeoffs

BFS is complete and admissible, but uses bd space

DFS uses bd space, but is not admissible and only complete if
m > d

How can we get the best of both algorithms?

School of Computing and Data Science - 14/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Iterative Deepening Search

1: for d = 1 to ∞ do
2: DFS to level d
3: if DFS succeeds then
4: return solution

School of Computing and Data Science - 15/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

IDS Evaluation

Assume branching factor b and solution depth d

Completeness:
Time:

Space:
Admissibility:

School of Computing and Data Science - 16/17 - Frank Kreimendahl | kreimendahlf@wit.edu



Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

Comparisons

Requirements

Search

Search Tradeoffs

IDS

Runtime

Runtime

How can this be efficient? This generates nodes near the start
many times.

Intuition: Because of branching, most of the generated nodes are
at the same depth as the goal node.

generated nodes = bd +2bd−1 + · · ·+(d−1)b2 +db

School of Computing and Data Science - 17/17 - Frank Kreimendahl | kreimendahlf@wit.edu


	Search
	Formalization
	Representation

	Basic Algorithms
	DFS
	BFS
	Uniform-Cost
	Comparisons
	Requirements
	Search
	Search Tradeoffs
	IDS
	Runtime


