TWOo
&“ &):9 Classical AI

:

© Professor Frank Kreimendahl

Ghool of Computing and Data Science
Wentworth Institute of Technology

~J
@)
>

May 15, 2023

Search
Formalization
Representation

Ba:

Algorithms

Search

School of Computing and Data Science -2/17 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Formalizing Problem Solving

Search

Formalization

State: hypothetical world state
Operations: actions that modify world
Goal: desired state or test

The major features of the program that are worthy of
discussion are:

1. The recursive nature of 1its problem-solving activity.

2. The separation of problem content from problem-
solving technique as a way of increasing the
generality of the program.

3. The two general problem-solving techniques that
now constitute its repertoire: means-ends analysis,
and planning.

Newell, Shaw, and Simon: “Report On A General Problem-Solving
Program”, 1959

School of Computing and Data Science -3/17 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Representation

Search

Representation

Algorithms

SampleWorld: first assignment
SW state space
SW search space

School of Computing and Data Science -4/17 -

Frank Kreimendahl | kreimendahlf@wit.edu

Search

Basic
Algorithms
Basic Algorithms

School of Computing and Data Science -5/17 - Frank Kreimendahl | kreimendahlf@wit.edu

-First Search

Search

Basic
Algorithms

: Open < ordered list containing initial state
while true do
if Open is empty then
return failure
Node < Open.Pop()
if Node is goal then
return Node (or path to Node)
else
Children < Expand(Node)
10: Add Children to front of Open

R A o N e

School of Computing and Data Science -6/17 - Frank Kreimendahl | kreimendahlf@wit.edu

DFS Evaluation

Search

Basic
Algorithms

Assume branching factor » and solution depth d

Completeness:
Time:

Space:
Admissibility:

School of Computing and Data Science =717 - Frank Kreimendahl | kreimendahlf@wit.edu

Breadth-First Search

Search

Basic
Algorithms

DFS

1: Open <+ ordered list containing initial state
2: while true do

3 if Open is empty then

4 return failure

5: Node < Open.Pop()

6 if Node is goal then

7 return Node (or path to Node)

8 else

9: Children < Expand(Node)

10: Add Children to end of Open

School of Computing and Data Science -8/17 - Frank Kreimendahl | kreimendahlf@wit.edu

BFS Evaluation

Search

Basic
Algorithms

DFS

Assume branching factor » and solution depth d

Completeness:
Time:

Space:
Admissibility:

School of Computing and Data Science -9/17 - Frank Kreimendahl | kreimendahlf@wit.edu

Uniform-Cost Search

Search

Basic
Algorithms

1: Open < priority queue containing initial state

2: while true do

3 if Open is empty then

4 return failure

5: Node < Open.Pop()

6 if Node is goal then

7 return Node (or path to Node)

8 else

9: Children < Expand(Node)

10: Add Children to Open, sorted by path cost

School of Computing and Data Science -10/17 - Frank Kreimendahl | kreimendahlf@wit.edu

Search

Basic
Algorithms
DFS

BFS

Uniform-Cost

School of Computing and Data Science

- 11/17 -

m Check for cycles with Node’s ancestors

m Maintain closed list to detect duplicates

Frank Kreimendahl | kreimendahlf@wit.edu

4 Comparisons

Search

Basic
Algorithms

DFS

S Algorithm Time Space Complete Admissible
. DFS b bm ifm>d no
BFS b b? yes if ops cost 1
Uniform-cost ¢ b? yes yes

b: branching factor
d: solution depth
m: maximum explored depth

School of Computing and Data Science -12/17 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Resource Requirements for Solutions

Search

Basic

Algorithms Assume b = 10, 100k nodes/sec, 100 bytes/node

DFS
BFS

Sol. depth

Nodes Time Space

AN B~ =

oo

10
12
14

School of Computing and Data Science

11 dlms 1.1Kb
111 l.Ims 11Kb
11,111 .11 sec 1Mb
10° 11sec 111Mb
108 18 min 11Gb
10'° 31 hours 1Tb
10" 128days 111Tb
10" 35years 11Pb

-13/17 - Frank Kreimendahl | kreimendahlf@wit.edu

Search Tradeoffs

Search

Algorithms
DFS

BFS

t

BFS is complete and admissible, but uses b space

Search Tradeoffs

DEFS uses bd space, but is not admissible and only complete if
m>d

How can we get the best of both algorithms?

School of Computing and Data Science - 14/17 - Frank Kreimendahl | kreimendahlf@wit.edu

Iterative Deepening Search

Search

Basic
Algorithms

DFS

BFS

1: ford =1to ~ do

2: DFS to level d

3: if DFS succeeds then
4: return solution

School of Computing and Data Science - 15/17 - Frank Kreimendahl | kreimendahlf@wit.edu

IDS Evaluation

Search

Basic
Algorithms

DFS

BFS

School of Computing and Data Science

Completeness:
Time:

Space:
Admissibility:

- 16/17 -

Assume branching factor » and solution depth d

Frank Kreimendahl | kreimendahlf@wit.edu

Runtime

Search

How can this be efficient? This generates nodes near the start
many times.

Intuition: Because of branching, most of the generated nodes are
at the same depth as the goal node.

generated nodes = b? +2b%" 1 ... 4+ (d — 1)b* +db

School of Computing and Data Science -17/17 - Frank Kreimendahl | kreimendahlf@wit.edu

	Search
	Formalization
	Representation

	Basic Algorithms
	DFS
	BFS
	Uniform-Cost
	Comparisons
	Requirements
	Search
	Search Tradeoffs
	IDS
	Runtime

