

Supervised Learning

- Neural Nets
- Feedforward
- BackProp
- Success

Decision Trees

Supervised Learning

School of Computing and Data Science

Neural Nets

Supervised Learning

- Neural Nets
- Feedforwar
- BackProp
- Success

Decision Trees

- regression: given inputs and outputs, find good weights of input nodes
- neural networks: given inputs and outputs, introduce hidden layers and find good weights
- start with random weights and adjust based on perceived error

Activation function: the output of each node is based on the weighted sum of inputs, run through a nonlinear function (often sigmoid)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Nonlinear activation function means nonlinear system behavior

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Neural Nets

Supervised Learning

- Neural Nets
- BackProp

Success

Decision Trees

- regression: given inputs and outputs, find good weights of input nodes
- neural networks: given inputs and outputs, introduce hidden layers and find good weights
- start with random weights and adjust based on perceived error

Activation function: the output of each node is based on the weighted sum of inputs, run through a nonlinear function (often sigmoid)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Nonlinear activation function means nonlinear system behavior

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Supervised Learning Neural Nets Feedforward BackProp Success

Decision Trees

- With good weights, a neural net has a good approximation function: inputs and outputs match the training data
- Feed the input, calculate the values of each node, check the outputs
- Initial weights were random, though!
- We need to change weights for every connection to decrease the output error

Feedforward

Supervised Learning Neural Nets Feedforward BackProp

Decision Trees

Back-propagation

- After feeding input values forward, we have a prediction for the output
- Based on this prediction and the actual labeled output, we trace error backwards through system

For the last set of weights:

$$W_{i,j} = W_{i,j} - \alpha(\frac{\delta Error}{\delta W_{i,j}})$$
$$= W_{i,j} - \alpha \Delta i$$

To update hidden layer weights, we use weighted sum of changes

$$W_{i,j} = W_{i,j} + lpha \sum_j W_{i,j} \Delta_j$$

School of Computing and Data Science

Supervised Learning Neural Nets Feedforward BackProp Success

Decision Trees

Successful Neural Nets

- +: Neural nets perform better with multiple hidden layers
- +: Excellent results for many training sets
- -: Training is computationally intensive
- -: Weights and hidden nodes are not intuitive

Supervised Learning

Decision Trees

Example Learning

Decision Trees

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Example

Supervis	ed
Learning	

Decision Trees

Example

Learning

Example	Input Attributes									Output	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
X 3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
X 6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = Yes$
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = Nc$
x ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = Nc$
x ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Ye_{12}$

Restaurant domain

Supervised Learning Decision Trees Example Learning

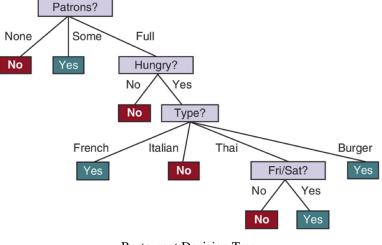
Learning a Decision Tree

Goals:

- Decision tree matches data
- Decision tree is small (fewer nodes, smaller height) Approach:
 - Analyze attributes for best simplification
 - Split examples based on that attribute
 - For all values of attribute, find remaining best attribute...
 - Resulting tree is a small tree that makes good predictions

Resulting tree may not match original (unobservable) tree

Example



Restaurant Decision Tree