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Neural Nets

regression: given inputs and outputs, find good weights of
input nodes

neural networks: given inputs and outputs, introduce hidden
layers and find good weights

start with random weights and adjust based on perceived
error

Activation function: the output of each node is based on the
weighted sum of inputs, run through a nonlinear function (often
sigmoid)

σ(x) =
1

1+ e−x

Nonlinear activation function means nonlinear system behavior
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Feedforward

With good weights, a neural net has a good approximation
function: inputs and outputs match the training data

Feed the input, calculate the values of each node, check the
outputs

Initial weights were random, though!

We need to change weights for every connection to decrease
the output error
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Back-propagation

After feeding input values forward, we have a prediction for
the output
Based on this prediction and the actual labeled output, we
trace error backwards through system

For the last set of weights:

Wi,j = Wi,j −α(
δError
δWi,j

)

= Wi,j −α∆i

To update hidden layer weights, we use weighted sum of changes

Wi,j = Wi,j +α ∑
j

Wi,j∆j
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Successful Neural Nets

+: Neural nets perform better with multiple hidden layers

+: Excellent results for many training sets

−: Training is computationally intensive

−: Weights and hidden nodes are not intuitive
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Restaurant domain
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Learning a Decision Tree

Goals:

Decision tree matches data

Decision tree is small (fewer nodes, smaller height)

Approach:

Analyze attributes for best simplification

Split examples based on that attribute

For all values of attribute, find remaining best attribute. . .

Resulting tree is a small tree that makes good predictions

Resulting tree may not match original (unobservable) tree
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Restaurant Decision Tree
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