

- [Value Iteration](#page-1-0)
- [Policy Iteration](#page-3-0)
- [Reinforcement](#page-4-0)

[Solving MDPs](#page-0-0)

Value Iteration

[Solving MDPs](#page-0-0)

[Value Iteration](#page-1-0)

[Stopping](#page-2-0)

[Policy Iteration](#page-3-0)

[Reinforcement](#page-4-0) Learning

Repeated Bellman updates:

1: for all States *s* do

$$
2: \qquad U(s) \leftarrow R(s)
$$

- 3: while unsatisfied do
- 4: for each state *s* do

5:
$$
U'(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s')
$$

6: $U \leftarrow U'$

Utility values are guaranteed to converge with enough updates This equilibrium gives an optimal policy

[Value Iteration](#page-1-0) [Stopping](#page-2-0) [Policy Iteration](#page-3-0) [Reinforcement](#page-4-0) Learning

When To Stop

Eventually updates have diminishing returns

 $||U_{i+1} - U_i||$ = max difference of *U* between iterations

$$
||U_{i+1} - U_i|| < \varepsilon (1 - \gamma)/\gamma \implies ||U_{i+1} - U^*|| < \varepsilon
$$

Policy loss: the most utility an agent loses by following policy π_i instead of π^* Policy is often optimal many iterations before *Uⁱ* converges on optimal

[Solving MDPs](#page-0-0) [Value Iteration](#page-1-0) **[Stopping](#page-2-0)** [Policy Iteration](#page-3-0)

[Reinforcement](#page-4-0) Learning

Policy Iteration

U: utility for all states π : action policy for all states

POLICYITER(*mdp*)

1: repeat

- 2: $U \leftarrow$ PolicyEval(π , *U*, *mdp*)
- 3: *unchanged* \leftarrow true
- 4: for all States *s* do
- 5: $a^* \leftarrow \text{argmax}_{a \in A(s)} QVal(mdp, s, a, U)$
- 6: **if** $QVal(mdp, s, a^*, U) > QVal(mdp, s, \pi[s], U)$ then
- 7: $\pi[s] \leftarrow a^*$
- 8: *unchanged* ← false
- 9: until *unchanged*
- 10: return π

[Reinforcement](#page-4-0) Learning

[Definition](#page-5-0)

[Sweeping](#page-7-0) [Reinforcement Learning](#page-4-0)

School of Computing and Data Science - 5/8 - 5/8 - Frank Kreimendahl | *kreimendahlf@wit.edu*

Definition

[Solving MDPs](#page-0-0) [Reinforcement](#page-4-0) Learning

[Definition](#page-5-0)

[ADP](#page-6-0) [Sweeping](#page-7-0)

Build a good policy based on experience only: (s, a, s', r) Objective:

- **finite horizon:** $R(s_0) + R(s_1) + R(s_2)$, or
- infinite horizon: $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$

Learning because we don't start with a model of the system

[Reinforcement](#page-4-0) Learning [Definition](#page-5-0) [ADP](#page-6-0)

[Sweeping](#page-7-0)

Adaptive Dynamic Programming

- **Learn** *T* and *R* functions through trials
- Easy approach to find rewards from each state, and transition probabilities
- Calculate π using MDP solution

Update utility and policy of all states until satisfied

[Reinforcement](#page-4-0) Learning [Definition](#page-5-0) [ADP](#page-6-0) **[Sweeping](#page-7-0)**

Focus on areas of model where large changes are expected

$\text{UPDATE}(s, a, s', r)$

Prioritized Sweeping

- 1: update model
- 2: UPDATE(*s*)
- 3: Do *k* times: update highest priority

UPDATE(*s*)

- 1: update $U(s)$
- 2: priority of $s \leftarrow 0$
- 3:
- 4: for all States *s* ′ that are predecessors of *s* do
- 5: priority of $s' \leftarrow max(current, max_a \delta \hat{T}(s', a, s))$