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discounted reward: penalize future rewards by γ

• R(s0)+ γR(s1)+ γ2R(s2)+ · · ·+ γnR(sn)

policy: π(s) = a gives an action for each state

optimal policy: π∗
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Calculating π∗

Optimal policy is based on optimal utility:

π
∗(s) = argmax

a∈A(s)
∑
s′

T(s,a,s′)Uπ∗(s′)

Utility of a policy is based on expected rewards:

Uπ(s) = E[
∞

∑
t=0

γ
tR(st)|π,s0 = s]

Utility of a state is its reward plus the best utility of an action in

that state:

U(s) = R(s)+ γ max
a ∑

s′
T(s,a,s′)U(s′)
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Value Iteration

Repeated Bellman updates:

1: for all States s do
2: U(s)← R(s)
3: while unsatisfied do
4: for each state s do
5: U′(s)← R(s)+ γ maxa ∑s′ T(s,a,s′)U(s′)
6: U← U′

Utility values are guaranteed to converge with enough updates
This equilibrium gives an optimal policy
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MDP Example

Transitions to terminal states have rewards of −1 and 1, all other
transition rewards are −.04

Probability of .8 to move in intended direction, .1 to move at a
right angle

0 < γ ≤ 1 – let’s pick γ = .5
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