

Intelligence Goals in AI Relations AI Today AI in Robotic

This Course

Agents and Environments

What Is AI?

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

- Intelligence Goals in AI
- Relations AI Today
- This Course

Agents and Environments

What Is Intelligence?

What behaviors require intelligence? What makes an agent intelligent?

Goals in AI

What Is AI?

Intelligence Goals in AI

Relations AI Today

This Course

Agents and Environments Cognitive Modeling: human-like behavior Engineering: human-like performance Rational: perfect/optimal behavior Bounded-rational: behaving as close to perfect as possible

Subfields: knowledge representation and reasoning, computer problem-solving, planning, machine learning, natural language processing, (autonomous) robotics, intelligent agents, multi-agent systems, distributed AI, intelligent user interfaces, machine vision

Relations

What Is AI?

- Intelligence Goals in AI Relations
- AI Today
- This Course
- Agents and Environments

- CS: algorithms
- Engineering: applications
- Cognitive psych: modeling
- Math: logic, statistics
- Linguistics: language processing
- Operations research: optimization
- Economics: agents, incentives

AI Today

What Is AI?

- Intelligence Goals in AI
- Relations
- AI Today
- This Course
- Agents and Environments

- Games: chess, backgammon, Jeopardy!, crosswords, go, StarCraft II, Gran Turismo
- Design: VLSI, jet engines
- Diagnosis: loans, customer service, medical testing and classification
- Planning: airports, flight routes, logistics
- Learning: Amazon, Netflix, Walmart, Facebook
- Robotics: ping-pong, driving, flying, swimming
- Language: voice recognition, translation, subtitles
- Vision: scene descriptions, face recognition
- Creativity: writing, art

AI in Robotics

What Is AI?

Intelligence Goals in AI Relations AI Today AI in Robotics

This Course

Agents and Environments

This Course

Schedule

Formalisms

Agents and Environments

This Course

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Schedule

- Schedule Formalisms
- Agents and Environments
- **1** Problem solving: sampling robot planner
- 2 Logic: theorem prover
- **3** Planning: general planner
- 4 Learning: reinforcement learner, handwriting classifier
- 5 Probabilistic reasoning

Formalisms Agents and Environments

Formalisms

- 1 combinatorial search
- 2 propositional logic
- 3 first-order logic
- 4 Markov decision processes
- 5 hidden Markov models
- 6 Bayesian networks

Missing: NLP, vision, robotics, cognition, neural nets

What Is AI? This Course

Agents and Environments

Agent Designs Examples Environments Search Space

Agents and Environments

School of Computing and Data Science

Frank Kreimendahl | kreimendahlf@wit.edu

Agent Designs

what is Al:
This Course
Agents and Environments
Agent Designs

Environments Search Space Reflex: sensors \rightarrow actuators

Reflex with state: sensors + state \rightarrow actuators + new state Goal-based: reason to achieve goals

Utility-based: quantitative measure of achievement

This Course

Agents and Environments

Agent Designs

Examples

Environments

1 Thermostat

2 DART logistics planner

3 Mail delivery bot

Examples of Agents

- 4 Medical diagnosis system
- 5 Eliza

Environments

** 114	1 15 AL.
This	Course
A ger	nte and

Agents and Environments

Agent Designs Examples

Environments

Observability: complete, partial, hidden Predictability: deterministic, strategic, stochastic Interaction: one-off, sequential Time: static, dynamic State: discrete, continuous Agents: single, multiagent (competitive, cooperative)

This Course

Agents and Environments

Agent Designs

Examples

Search Space

Example Search Space